Reducing Medication Errors

David M. Benjamin, Ph.D.
Clinical Pharmacologist & Forensic Toxicologist,
Consultant in Legal Medicine & Risk Management
Fellow, American Academy of Forensic Sciences (Toxicology)
Fellow, American Society for Healthcare Risk Management
Fellow, American College of Clinical Pharmacology
Fellow, American College of Legal Medicine
Why Do Pts Sue Their Doctors?
Problematic Relationships: 71%*

- Deserted PT - 32%
- Devalued PT and/or Family Views - 29%
- Delivered Information Poorly - 26%
- Failed to Understand Patient or Family Perspective - 13%

*Beckman et al, Arch Int Med 1994;154:1365

Communication skills are as important as clinical skills in avoiding lawsuits!
What is a Medication Error?

“any preventable event that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the healthcare professional, patient, or consumer. Such events may be related to professional practice, healthcare products, procedures, and systems, including prescribing; order communication; product labeling, packaging, and nomenclature; compounding; dispensing; distribution; administration; education; monitoring; and use.”

www.nccmerp.org
Common Medication Errors

- Wrong Drug
- Wrong Dose
- Wrong Route (of administration)
- **Wrong Patient**
- Wrong Time (or omission)
- Ambiguous/Illegible Rx -> Transcription Error
- Inadequate Monitoring (e.g., lack of proper follow-up)
- **JC Pt Safety Goal:** Must reconcile medications across a continuum of care
What Information About a Drug Should you Provide a Patient?*

- Nature of the proposed treatment or procedure
- Reasonably Foreseeable material risks
- Appropriate alternative treatments or procedures
- Foreseeable risks if patient becomes pregnant
- Special instructions re: food, drink, lifestyles, eg, no Chianti with MAOIs
- Tell patients to call if: rash, dark urine, or anything unexpected occurs;
- Pt should repeat critical info; Ask pt for questions

Top Five Claims Against Physicians
(Mass Pro-Mutual Ins Co., 2003)
(They’re still the same!)

- Failure to Diagnose
- Misinterpretation of Laboratory Test or Study
- Failure to Conduct a Proper History & Physical
- Failure/Delay in Obtaining a Timely Referral or Consult
- Failure/Delay in Admitting a Patient to the Hospital
Quality Improvement: A Refocus on Errors - What Got Everything Started?

- The Institute of Medicine issued: To Err is Human which reported that 44,000 - 98,000 patients died each year as a result of “Medical Error” (e.g., medication errors, surgical errors, missed diagnoses)
- At an estimated cost to the US economy of $17-$29 billion
Major Findings of the IOM Study

- Based on two reports from three states: New York (1984), Utah and Colorado (1992)
- NY study sampled **30,000 charts** from 51 state hospitals and found:
 - 3.7% of pts suffered injury severe enough to disable them or prolong hospitalization
 - 58% of these injuries were due to error; 13.6% were fatal
Major Findings of the IOM Study-2

- The 98,000 number was extrapolated from the NY study, based on the number of hospitalizations for 1997
- Based on reports from Utah and Colorado (1992), 15,000 charts were sampled
- 44,000 deaths was extrapolated from these data
- The IOM report has been criticized by one of the investigators, Troyen Brennan, MD, JD, MPH of the Harvard School of Public Health
Develop a Philosophy of Patient Safety

- Recognize the patient’s needs
- Be alert for better ways to do things
- Record & track medication/medical error and investigate all instances & “near misses”
- Re-engineer faulty medication delivery systems to reduce the risk of errors (RCAs)
- Focus on the system, not the person
Patient Safety and Quality Improvement Act of 2005
(S. 544 - Public Law N 109-41 - Passed July 29, 2005)

- Report errors anonymously to Patient Safety Organizations (PSOs)
- Obtain legal privilege for reports
- Analyze non-identifiable pt. safety data
- Develop national standards promoting interoperability and health care information technology systems
- Develop Med Info Technology Advisory Board to determine: best practices in IT, lexicon for computer technology; RFID, Bar Coding using NDC number.
Risk Management Strategies For Preventing Law Suits

- Be **Professional** and **Courteous**
- Keep Good Records and **Never alter a patient’s chart** in the event of, or fear of litigation - your credibility becomes 0
- Provide an Adequate Informed Consent & Instructions to call at the first sign or symptom of a serious ADR
- **Project Realistic Outcomes & Expectations**, e.g., don’t say “It won’t hurt”, say “We will manage the pain and keep you comfortable.”
Elements of a Negligence Claim

- Physician-Patient relationship established, or professional owed a duty of reasonable care to patient
- Physician’s conduct was below the standard of care (what a reasonable MD would have done under similar circumstances)
- Patient was injured (damages)
- Negligence was a “Proximate Cause” of the patient’s damages
Types of Adverse Drug Reactions (ADRs) Frequently Encountered

- **Overmedication** - too much or too many
- **Side Effect** - an undesirable drug effect
- **Secondary Effect** - additional drug effects
- **Allergic Reactions** - e.g., to antibiotics
- **Idiosyncratic** - rare
- **Maternal-Fetal** - *in utero* or during nursing
- **Drug-Drug** Interactions - ADME
- **Alternative Medical Products & OTC drugs**
Take a Complete Drug History Including Alternative Medical Products

- "Natural Products", e.g., St. John’s Wort is an MAOI & Reduces serum Digoxin levels
- Kava Kava causes liver damage
- Herbals, e.g., Ephedrine-containing
- Food Supplements, e.g., L-Tryptophan
- Androgenic Supplements - Heart Failure
- Vitamins & Minerals in Excessive Doses, e.g., >10,000 IU Vitamin A/day--> Toxicity
- OTC Drugs
Identifying High Risk Drugs

- **Low Therapeutic Index:** digoxin, anti-coagulants
- **Inherent Undesirable Effect(s),** e.g., steroids, chemo
- **Class of Drugs Which Share Toxicity:** NSAIDs, ACEIs
- **Drug Allergies - antibiotics; cross-sensitivity**
- **Narcotics - Patient Controlled Analgesia**
- **Newly Approved Drugs - Minimal Safety Data**
- **“Off-Label” Use of Drugs, e.g., Fen-Phen**
- **Pharmacokinetic Drug Interactions, e.g., SSRIs**
- **Advertised: Direct-to-Consumer, “Doctor, can I have some of that stuff I saw on TV?”**
What Classes of Drugs are Involved in Common Medication Errors?

- Antibiotics: 19-30%
- Analgesics: 7-30%
- Cardiovascular: 8-18%
- Concentrated electrolytes: 1-10%
- Antineoplastic drugs: 7-8%
- Sedatives: 4-8%
- Anticoagulants: 1.3-3% (1000U Heparin)

Source: Agency for Healthcare Research and Quality (AHRQ) sponsored studies
Classes of Drugs Appearing Twice During 1996-98 in PHICO’s Closed Claims Project*

- Antibiotics
- Anticoagulants
- Antirheumatics
- Tranquilizers
- Concentrated electrolytes
- Insulin
- Oral Antidiabetics
- Antihypertensives
- Opiates
- Fibrinolytics

Medication Errors Appearing in PHICO’s 1998 Closed Claims*

- Allergic/Adverse Reaction (25%)
- Contraindicated drug administered (22%)
- IM Technique Issue (10%)
- Incorrect dose (10%)
- Wrong Patient (3%)
- Wrong route (3%)
- Labeling/dispensing error (1%)
- Not classified: eg, failure to monitor or prescribe

What to do About “High Risk” Drugs

- Recognize and Identify them!
- Limit use to when needed; employ pre-written “Limit Dose” Protocols
- Review and update protocols for administration to insure proper dosing, lack of drug-drug interactions, & adequate monitoring
- Use appropriate laboratory tests (e.g., Pro-Times) or blood level monitoring to confirm proper therapeutic response and safety
Proximal Causes of Medication Errors:

- Lack of Knowledge About the Drug
- Lack of Information About the Patient
- Rule Violations
- Slips and Memory Lapses
- Transcription Errors
- Faulty Drug Identification
- Dosing Errors
- Infusion Pump/Parenteral Delivery Error
- Inadequate Monitoring
- Preparation Errors
Lack of Knowledge About the Drug

- Inadequate knowledge of:
 - Indications
 - Dosage
 - Routes of Administration
 - Chemical Incompatibilities or Drug Interactions
Lack of Information About the Patient

- Allergies or Sensitivities
- Current Diagnosis
- Secondary Diagnoses
- Concomitant Medications
- Prior Medical History
A 63 yo white male has been receiving enalapril for one year for the treatment of his hypertension. Last week, he experienced some difficulty swallowing and discomfort in the back of his throat. He called his doctor and was told to go to the emergency room at the local hospital. Upon arrival in the ER, the patient was experiencing some mild breathing difficulty and was treated with Benadryl, 50 mg, IM and oxygen by mask. Within 30 minutes, the patient was breathing more comfortably and was admitted to a general medical floor for observation.

The next morning, the patient’s wife arrived with a bag of the patient’s “other medications”, which she said she administered to her husband every day. The nurse called the admitting physician and received permission to administer the patient’s other meds, during the course of which, she also administered another dose of enalapril.
The patient was discharged later that day. The day following discharge, the patient suffered an episode of acute angioneurotic edema with dysphagia, lip swelling, airway obstruction, and expired before paramedics could respond.

Conduct a Root Cause Analysis and determine:

What “System Errors” (shown on next slide) Occurred?

What can be done to prevent a recurrence?
Proximal Causes of Medication Errors:

- Lack of Knowledge About the Drug
- Lack of Information About the Patient
- Rule Violations
- Slips and Memory Lapses
- Transcription Errors
- Faulty Drug Identification
- Dosing Errors
- Infusion Pump/Parenteral Delivery Error
- Inadequate Monitoring
- Preparation Errors
Enalapril Case Process (Basic Minimum)

Patient Admitted

Rx from Home

Nurse obtained “Telephone okay” from MD to administer med brought from home

Rx from home given to patient with catastrophic result

Discharge plan; No Medication Reconciliation (Do not give ACEIs to Pt)
Correct Process

Patient Admitted

Rx from Home

Entered into Record

Reviewed by Pharmacy

Approved by Pharmacy per Care Plan

Rx on EMAR For Hospital Use

Discharge Plan Medication Reconciliation

Questioned by Pharmacy

Confer with MD

Approved Rx per MD

Hold back Specific Rx per MD
The Data (Evidence)-Based Route Cause Analysis (RCA)

E=Event
M=Mode, unexplained fact
H=Hypothesis

Courtesy of Reliability Center, Inc. 2012
Medication Use Process

Transcription

Prescribing -> Dispensing -> Administering -> Monitoring

Communication
How do the Most Common Types of Medication Errors Arise?

- Physician ordering: 39-49%
- Nursing administration: 26-38%
- Transcription error: 11-12%
- Pharmacy dispensing error: 11-14%

Slips and Memory Lapses

- Mental Lapses
- Intellectual Errors
- Stress
- Attention Diverted by:
 - Page
 - Someone Talking to You
 - Phone Call
- You’re Only Human
Why Use CPOE?

- MD computerized order entry decreased serious medication errors 55% and
- Potential undetected Adverse Drug Experiences (ADE) declined 84%
- Bates et al. JAMA 1998;280:1311-1316
Still Problems With CPOE

- CPOE Software Differ
- In 2003, the USP found that 57.9% of CPOE involved Lack of Knowledge
- Computer Entry ranked as the 4th leading cause of errors in 2003
- 67% of errors occurred during the prescribing phase
- 56.5% of all computer entry errors resulted from distraction
- JC Pt Safety Goal: Must reconcile medications across a continuum of care
Errors in Prescription Writing

- **Legibility** - Poor Handwriting is Not a Joke!
- **Lamisil** vs. **Lamictal**
- **Dosage**: Start Low - Go Slow!
- How many pills? How many refills? For how long?
- Use of Unapproved Abbreviations, eg “U”, QOD, QD (JC Pt. Safety Goals)
- **Brand vs. generic name mix-ups**
 - enalapril (**Vasotec**) vs. **Elderpryl** (**selegiline**)
Portrait of a Poor Prescription

Source: AMA Website
The Correct Drug was . . .

- **Final Answer:** *Isordil* not *Plendil* which was dispensed and caused fatal hypotension for which both the MD and RPh were held jointly liable for almost $500,000.
Transcription Errors
“Look-Alike” and “Sound Alike” Names

Confusion Over: Drug Names or Handwriting

- Larocin 250 mg vs. Lanoxin 0.250 mg
 (Larocin changed to Larotid after mix-up)

- Losec changed to Prilosec after confusion with Lasix

- Heparin 1000U sc q 4 hrs
 Can’t abbreviate Units, you risk a ten-fold OD!
More Sound-alike, Look-alike Drugs

- Amicar
- Cardura
- Darvocet
- Effexor
- hydrocodone
- MS Contin
- Tramadol
- Zestril
- Zocor
- Oxycontin
- hydroxyzine
- lorazepam

- Omacar
- Coumadin
- Percocet
- Effexor XR
- oxycodone
- Oxycontin
- trazodone
- Zyprexa
- Zyrtec
- oxycodone
- hydralazine
- alprazolam
Avoiding Prescription Errors

- Write Legibly
- Don’t Guess
- Be Careful with “look alike” names, e.g., Elderpryl vs enalapril
- Consider writing in the indication to further avoid confusion, e.g., Elderpryl for Parkinson’s Disease
- Avoid ten-fold dosing errors: write 1 mg instead of 1.0 mg.
- Conversely, write: 0.250 mg Lanoxin, not .250 mg, where decimal can be lost
- Write 4 times per day not 4 x daily; Is this qid or for 4 consecutive days?
Avoiding Ambiguity in Prescription Writing

- Consider writing the condition for which the medication is indicated on the prescription, under the drug name.
- Examples:
 - Lamictal 100 mg bid for seizures
 - Lamisil 250 mg daily for fungal infection
Avoiding Ambiguity in Prescription Writing

- Consider writing both the Brand name and the generic name of the medication

- Examples:
 - **Vasotec (enalapril)** 2.5 mg daily for hypertension
 - **Elderpryl (selegiline)** 5 mg bid for Parkinson’s Disease
Hint: When it Comes to Zeroes-
Always Lead and Never Follow!

Always write: 1 mg not 1.0 mg

eg, Lanoxin 0.125 mg vs Xanax 1.0 mg hs

Correct

Incorrect*

*Should be written: Xanax 1 mg hs
Patient Factors Influencing the Drug Selection Process

1. Renal Disease
2. Hepatic Disease
3. Level of CYP Isoenzymes [clinically available]
4. Interaction with other drugs being taken
5. Allergic response in past
6. Prior experience resulting in an ADE
Criteria to be Considered

- Number of Drugs being taken
- Long Acting & Administration Ability
- CYP interference
- Creatinine Clearance
- T/E Code rating (Therapeutic Index, TI)
- No Patient should be financially penalized because of a medical/pharmacologic problem.
The “First Year” Effect

- Patients exposed to new drug increases from thousands to hundreds of thousands or millions,
- New adverse reactions emerge, or
- Previous incidence takes on new perspective.
For example: The Short Life of Omniflox (temofloxacine)

- Introduced: Jan 1992
- First Rx: February 24
- Voluntarily withdrawn: June 9th - 15 weeks
- US Clin Trials 4,600 pts
- Mkt’d in 8 countries
 Est. 300,000 pts rec’d drug worldwide
Pre- vs Post- Marketing Adverse Drug Reaction Reports

- **Pre-Marketing**
 - 4,261 pts
 - Incidence > 1%
 - N, V, D, headache, rash, itching
 - Labs: Incr. BUN & creatinine
 - Renal Failure <0.1%

- **Post-Marketing**
 - fewer than 300,000 pts
 - 1,700 non-fatal ADRs reported to FDA
 - 54 cases of Acute Renal Failure, 113 cases of hemolytic anemia
 - 60 deaths, 25-50 may be related; Globe 1/94
Number of Patients Required With No Background Incidence of Adverse Reactions*

<table>
<thead>
<tr>
<th>Expected incidence of adverse reaction</th>
<th>Required number of adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 in 100</td>
<td>300</td>
</tr>
<tr>
<td>1 in 200</td>
<td>600</td>
</tr>
<tr>
<td>1 in 1,000</td>
<td>3,000</td>
</tr>
<tr>
<td>1 in 2,000</td>
<td>6,000</td>
</tr>
<tr>
<td>1 in 10,000</td>
<td>30,000</td>
</tr>
</tbody>
</table>

Other Post-1960s Fiascoes We Have Known and Loved

- 1970s
 - DES
 - IUDs
 - DPT/MMR
- 1980s
 - Oraflex, Zomax, Suprofen
 - Generic Drugs
 - Bendectin
- 1990s
 - L-Tryptophan - EMS
 - Omniflox - 5-month life
 - Toradol - 5-day labeling
 - Imitrex - First-Year Effect
 - Silicone Breast Implants
 - Fen-Phen - “Off-Label” use
 - Duract - Where is Dr. Kelsey when we still need her?
More Withdrawn Drugs

- Posicor® - too many interactions
- **Rezulin®** - liver toxicity
- **Raxar®** - cardiac arrhythmias
- Propulsid® - too many interactions
- **Seldane**/Hismanyl® - long QT syndrome
- **Rotashield®** - infant bowel obstruction
- **Lotronex®** - off Nov 2000 GI ADRs & deaths; Re-instituted 2002 w/pt FU
- **Baycol®** (are other “statins” to follow?)
- Vioxx® & Bextra® – MIs & CVAs
Urgent news for people who took Baycol®

Many consumers who took the cholesterol lowering drug Baycol® have developed an illness called Rhabdomyolysis that causes kidney failure, muscle pain and weakness, and even death. Kidney failure is often accompanied by darkened, discolored urine. Baycol® has been withdrawn from sale. If you or a loved one took Baycol® and experienced any of these health problems, call us immediately so that we can consider your potential claim against the drug manufacturer.

Your legal rights have time deadlines, so call today (open 7 days/week) toll free from anywhere in the U.S. at 1-800-THE-EAGLE for a free consultation. We practice law only in Arizona, but associate with lawyers throughout the U.S. to help people across the country.

Goldberg & Osborne
The Injury Lawyers®
1-800-THE-EAGLE®
(1-800-843-3245)
www.1800theeagle.com

Open 7 Days a Week
Drug Interactions

- Pharmacokinetic
- Pharmacodynamic
Pharmacokinetic

- Absorption
- Distribution
- Metabolism
- Excretion
Metabolism

- Carried out in liver by CYP-450 enzymes, of which there are 5 families:
 - **CYP3A4 (54%)** (eg, methadone)
 - **CYP2D6 (25%)** (eg, codeine, methadone, hydrocodone, oxycodone)
 - **CYP2C (17%)**
 - **CYP 1A2 (2%)** (eg, methadone)
 - **CYP2E1 (2%)** (eg, ETOH & acetaminophen)
The United States Pharmacopeia (USP) has established a nationwide program for reporting Medication Errors.

Notice the emphasis is now on Medication Errors rather than Adverse Drug Reactions.

Errors are categorized according to severity and outcome (see next slide).

Hospitals pay a fee to join the program and receive software; Anyone can report to MERP.
USP MedMARx Reporting Program
Severity Levels and Outcomes

- **Category A** - Circumstances can cause error
- **B**: Error occurred - didn’t reach pt - “near miss”
- **C**: Error occurred - reached pt - no harm
- **D**: Error occurred - no harm - monitoring
- **E**: Error occurred - tx required - temp harm
- **F**: Error occurred - initial or prolonged hosp
- **G**: Error occurred - permanent pt harm
- **H**: Error occurred - near-death event
- **I**: Error occurred - resulted in pt death
Benefits of Reducing Medication Errors in the ICU

- 92% of errors involved MD ordering
- Preventable ADEs decreased 66%
- 12% of time cheaper or safer drugs were recommended by PharmD.
- Each preventable ADE costs approximately $4,685
- Estimated savings/year: $270,000
- Leape et al JAMA 1999;282:267-70
Benefits of Reducing Medication Errors

- Optimize Therapeutics
- Improve Care
- Increase Pt Satisfaction
- Decrease ADRs
- Reduce Risk of Litigation
- $ave Money
- 30 Day Rule
- Do it Right!
The 30-Day Rule
Minimizing Readmissions

Hospitals Seek to Avoid Penalties by Minimizing Readmissions

Faced with a stiff penalty for unnecessary readmissions, health centers are focused on keeping patients out of the hospital.

By Susan Brink | Aug. 9, 2013 | 4:15 p.m. EDT

George Oldt, 82, is afflicted with the double whammy of congestive heart failure and chronic obstructive pulmonary disease, conditions that can make breathing so frighteningly difficult he has to be rushed from his assisted living home in Lewisburg, Pa., to the hospital. It happened most recently in April, and might have happened again in July if it weren't for the close monitoring of a team of health care workers.
Preventing Medication Errors: Make the Proper Diagnosis & Give the Correct Drug to the Right Patient

Risk Management

- Quality Improvement
 - Evidence-Based Medicine
 - Drug Selection
 - Contracted Formularies
- Quality Assurance
 - Outcomes Research
 - Drug-1 vs Drug-2
- Utilization Review
 - Cost Control
 - Contracted Formularies
Evidence-Based Drug Selection

Choices

- Drugs with similar chemical structure
 - Barbiturate hypnotic
 - Secobarbital
 - Pentobarbital

- Drugs with similar mechanism of action
 - Benzodiazepine hypnotic
 - Dalmane® (flurazepam)
 - Halcion® (triazolam)
 - Ambien (zolpidem)

- Drugs with similar pharmacologic effects
 - Antihistamine
 - Benadryl® diphenhydramine